Generating Permutations of a Bag by Interchanges
نویسندگان
چکیده
We present algorithms for generating all permutations of a given bag so that successive permutations diier by the interchange of two elements. One version of the algorithm runs in time linear in the number of permutations.
منابع مشابه
Probability Generating Functions for Sattolo’s Algorithm
In 1986 S. Sattolo introduced a simple algorithm for uniform random generation of cyclic permutations on a fixed number of symbols. Recently, H. Prodinger analysed two important random variables associated with the algorithm, and found their mean and variance. H. Mahmoud extended Prodinger’s analysis by finding limit laws for the same two random variables.The present article, starting from the ...
متن کاملThe average number of block interchanges needed to sort a permutation and a recent result of Stanley
We use an interesting result of probabilistic flavor concerning the product of two permutations consisting of one cycle each to find an explicit formula for the average number of block interchanges needed to sort a permutation of length n.
متن کاملSorting Separable Permutations by Restricted Multi-break Rearrangements
A multi-break rearrangement generalizes most of genome rearrangements, such as block-interchanges, transpositions and reversals. A k-break cuts k adjacencies over a permutation, and forms k new adjacencies by joining the extremities according to an arbitrary matching. Block-interchange distance is a polynomial problem, but the transposition and the reversal distances are both NP-hard problems. ...
متن کاملFinite Dimensional Generating Spaces of Quasi-Norm Family
In this paper,~some results on finite dimensional generating spaces of quasi-norm family are established.~The idea of equivalent quasi-norm families is introduced.~Riesz lemma is established in this space.~Finally,~we re-define B-S fuzzy norm and prove that it induces a generating space of quasi-norm family.
متن کاملGenerating restricted classes of involutions, Bell and Stirling permutations
We present a recursive generating algorithm for unrestricted permutations which is based on both the decomposition of a permutation as a product of transpositions and that as a union of disjoint cycles. It generates permutations at each recursive step and slight modifications of it produce generating algorithms for Bell permutations and involutions. Further refinements yield algorithms for thes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Process. Lett.
دوره 41 شماره
صفحات -
تاریخ انتشار 1992